Disciplines enseignées

  • Biologie Végétale, L1 - SVT
  • Ecologie, L2 -SVT
  • Communication chez les plantes, L3 – SVT AGRO
  • Régulation du cycle cellulaire, L3 – SVT


Composante et département

Département Biologie
UFR Sciences, Technologies, Santé

Thèmes de recherche

Réponses des plantes à leur environnement et communication : physiologie, biologie cellulaire et moléculaire, transcriptomique, sénescence, post-récolte, électrophysiologie. Modèles principaux : laitue, Inula montana, tournesol.


  1. Ripoll J, Charles F, Vidal V, Laurent S, Klopp C, Lauri F, Sallanon H, Roux D. 2019. Transcriptomic view of detached lettuce leaves during storage: A crosstalk between wounding, dehydration and senescence. Postharvest Biology and Technology. 152:73-88.
  2. Garayev E, Di Giorgio C, Herbette G, Mabrouki F, Chiffolleau p, Roux D, Sallanon H, Ollivier E, Elias R, Baghdikian B. 2018. Bioassay-guided isolation and UHPLC-DAD-ESI-MS/MS quantification of potential anti-inflammatory phenolic compounds from flowers of Inula montana L. Journal of Ethnopharmacology. 226:176-184.
  3. Garayev E, Herbette G, Mabrouki F, Chiffolleau P, Roux D, Ollivier E, Elias R, Baghdikian B. 2018. Chemical constituents of Inula montana flowers and leaves. Chemistry of Natural Compounds. 54(4):755-756.
  4. Charles F, Nilprapruck P, Roux D, Sallanon H. 2018. Visible light as a new tool to maintain fresh-cut lettuce post-harvest quality. Postharvest Biology and Technology. 135:51-56.
  5. Roux D, Alnaser O, Garayev E, Baghdikian B, Elias R, Chiffolleau P, Ollivier E, Laurent S, El Maataoui M, Sallanon H. 2017. Ecophysiological and phytochemical characterization of wild populations of Inula montana L. (Asteraceae) in Southeastern France. Flora. 236-237:67-75.
  6. Garayev E, Herbette G, Di Giorgio C, Chiffolleau P, Roux D, Sallanon H, Ollivier E, Elias R, Baghdikian B. 2017. New sesquiterpene acid and inositol derivatives from Inula montana L. Fitoterapia. 120:79-84.
  7. Roux D, Catrain A, Lallechere S, Joly JC. 2014. Sunflower exposed to high-intensity microwave-frequency electromagnetic field: electrophysiological response requires a mechanical injury to initiate. Plant Signaling and Behavior. 10(1):e972787.
  8. Roux D, Girard S, Paladian F, Bonnet P, Lalléchère S, Gendraud M, Davies E, Vian A. 2011. Human keratinocytes in culture exhibit no response when exposed to short duration, low amplitude, high frequency (900 MHz) electromagnetic fields in a reverberation chamber. Bioelectromagnetics. 32:302-311.
  9. Lallechere S, Girard S, Roux D, Bonnet P, Paladian F, Vian A. 2010. Mode Stirred Reverberation Chamber (Msrc): a Large and Efficient Tool to Lead High Frequency Bioelectromagnetic in Vitro Experimentation. Progress In Electromagnetics Research B. 26:257-290.
  10. Roux D, Vian A, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G. 2008. High frequency (900 MHz) low amplitude (5 V m-1) electromagnetic field: a genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato. Planta. 227:883–891.
  11. Roux D, Faure C, Bonnet P, Girard S, Ledoigt G, Davies E, Gendraud M, Paladian F, Vian A. 2008. A possible role for extra-cellular ATP in plant responses to high frequency, low amplitude electromagnetic field. Plant Signaling and Behavior. 3(6):383-385.
  12. Roux D, Vian A, Girard S, Bonnet P, Paldian F, Davies E, Ledoigt G. 2006. Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. Physiologia Plantarum. 128(2):283-288.
  13. Vian A, Roux D, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G. 2006. Microwave irradiation affects gene expression in plants. Plant Signaling and Behavior. 1(2):67-69.

Informations complémentaires